
12/97 3

SAND97-2902 Distribution
Unlimited Release Category UC-705

Printed December 1997

Final Report for the Robustness-Agile
Asynchronous Transfer Mode (ATM) Encryption

Laboratory Directed Research and Development Project

Thomas D. Tarman, Robert L. Hutchinson, Peter E. Sholander,
and Richard J. Granfield

Network Systems Surety Department

 Lyndon G. Pierson
Advanced Networking Integration Department

Perry J. Robertson
Advanced Devices and Applications Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0449

Edward L. Witzke
RE/SPEC Inc.

Albuquerque, NM 87110

Abstract

A Robustness-Agile Encryptor (RAE) provides confidentiality services for each Asynchronous Transfer
Mode (ATM) virtual circuit at an arbitrary strength (or cryptographic robustness). This enhances ATM’s
flexibility, particularly in cases where political or policy constraints limit the choices for encryption
algorithms. It may also reduce operational costs, since several users can share one RAE. However, this
flexibility raises the concern that unauthorized personnel may use inappropriate algorithms (particularly the
“stronger” algorithms). Hence, RAE requires strong use-control techniques (such as cryptographic
authentication) in order to enforce each site’s security policy. This report describes Sandia’s
implementation of a prototype RAE. It covers issues such as use-control, cryptographic synchronization,
high-speed crypto-module design and RAE’s effect on ATM Quality of Service (QoS).

12/974

Acknowledgments

The authors wish to express their gratitude to the following individuals for their help in this project: Craig
Wilcox for his work on the DES encryption logic and PLD11, Larry Pucket and Terry Hardin for their work
on the design and layout of the PLD11, Jeff Ingle and Mark Bean of NSA for their collaboration, and Mike
Sjulin and Mike Vahle for their support of this work.

12/97 5

Contents

1. INTRODUCTION ...7

2. MOTIVATION FOR ROBUSTNESS-AGILE ATM ENCRYPTION..8

3. IMPLEMENTATION ISSUES IN ROBUSTNESS-AGILE ENCRYPTION11

4. ANALYSIS OF QOS EFFECTS OF ROBUSTNESS-AGILE ENCRYPTION13

5. DESIGN AND DEVELOPMENT OF A PROTOTYPE ATM ROBUSTNESS AGILE
ENCRYPTOR..16

5.1 DEVELOPMENT RAE SYSTEM ARCHITECTURE...16
5.2 RAE PROTOTYPE ARCHITECTURE..17

5.2.1 RAE Hardware ...19
5.2.2 RAE Software..37

6. CONCLUSIONS..43

7. REFERENCES ..44

12/976

Figures

FIGURE 1: RAE REFERENCE MODEL..9
FIGURE 2: EXAMPLE NETWORK USING RAES...10
FIGURE 3: PARALLEL PIPELINE ARCHITECTURE FOR AN ALGORITHM-AGILE ENCRYPTOR..............................13
FIGURE 4: DEVELOPMENT RAE ARCHITECTURE..16
FIGURE 5: SECURITY MESSAGE EXCHANGE..17
FIGURE 6: RAE PROTOTYPE ARCHITECTURE...18
FIGURE 7: RAE SWITCHING PATHS ..20
FIGURE 8: CONTROL REGISTER DEFINITION..21
FIGURE 9: STATUS REGISTER DEFINITION...22
FIGURE 10: SWITCHING TABLE ENTRY ...22
FIGURE 11: SHELL ADDRESSING...23
FIGURE 12: REGION DEFINITIONS...24
FIGURE 13: SPACE DEFINITIONS...24
FIGURE 14: PLD11 LOGICAL SIGNAL FLOWS...27
FIGURE 15: PLD11 BOARD LAYOUT ..28
FIGURE 16: PLD11 CLOCK DISTRIBUTION NETWORK..29
FIGURE 17: SUMMARY OF FEEDBACK MODES OF OPERATION..31
FIGURE 18: CHARACTERISTICS OF COMMON MODES OF OPERATION..31
FIGURE 19: "COST OF SYNCHRONIZATION" VS. "SCALABILITY " FOR COUNTER MODE AND CBC...................32
FIGURE 20: ENCRYPTION MODULE LOGIC DESIGN...33
FIGURE 21: DECRYPTION MODULE LOGIC DESIGN...34
FIGURE 22: DES/CBC ENCRYPTION/DECRYPTION ENGINE..35
FIGURE 23: DES COUNTER MODE ENCRYPTION/DECRYPTION ENGINE..36
FIGURE 24: PIPELINED DES ENCRYPTION ALGORITHM IMPLEMENTATION...37
FIGURE 25: HOST ATM SECURITY SOFTWARE ARCHITECTURE...38
FIGURE 26: RAE ATM SECURITY SOFTWARE ARCHITECTURE..38
FIGURE 27: RAE SOFTWARE INTER-PROCESS COMMUNICATION ...39

12/97 7

1. Introduction
Asynchronous Transfer Mode (ATM) is a data communications technology which is becoming increasingly
important for both local and wide area networks. One reason for this emergence is that ATM is very flexible
in terms of architecture and application support. Architectural flexibility is achieved through ATM’s
suitability for both local area networks and wide area networks. This architectural flexibility allows ATM to
support application data “end-to-end”, without expensive protocol conversion or protocol inefficiencies (in
contrast with the Transmission Control Protocol, which is inefficient in high bandwidth-delay
environments). Flexible application support is achieved by ATM because it uses small, fixed-length “cells”
as its basic unit of information, which allows for fine-grained multiplexing of data, thereby supporting many
different applications simultaneously (e.g., email, file transfers, telephony, and video). In addition, this fine-
grained multiplexing also provides statistical multiplexing gains, which increases link utilization. This is
particularly important when using expensive links, such as long-haul or satellite data communications links.

As ATM matures, users now want confidentiality services for their ATM applications. Those services must
provide strong confidentiality, yet still maintain ATM’s flexibility. In response to user needs, standards
organizations (most notably, the ATM Forum) are indeed developing flexible ATM security specifications.
However, actual products which exercise this flexibility do not currently exist. As such, this project
developed one such flexible encryption device – namely a Robustness Agile Encryptor (RAE).

This report describes the results of a Sandia-funded Laboratory-Directed Research and Development
(LDRD) project entitled “Robustness-Agile ATM Encryption and Associated Use Control”. A Robustness-
Agile Encryptor (RAE) allows ATM confidentiality services to be provided for each virtual circuit at an
arbitrary level of strength (or cryptographic robustness). This helps to maintain ATM’s flexibility,
particularly in cases where political or policy constraints limit the choices for encryption algorithms.
However, along with this flexibility comes the concern that certain algorithms (particularly the “stronger”
algorithms) may be used by unauthorized personnel. Hence, strong use-control techniques (such as
cryptographic authentication) are required to ensure that encryption algorithms are only used by those who
are authorized by the site’s security policy.

This project had two purposes. The first was to research several issues associated with robustness-agile
ATM encryption. The second was the development of prototype robustness-agile ATM encryptors, and
their associated use-control mechanisms. The issues explored by this project (and documented in this
report) include algorithm switching and other architectural aspects, ATM QoS effects, authentication and
key exchange protocols, and encryptor use-control issues. This project did not finish building a complete
prototype encryptor. However, it did successfully develop, or model, many sub-components. In particular, it
showed algorithm agility, strong access control to the algorithms, and the effects of algorithm agility on
ATM QoS. The completed sub-components include ATM signaling-based security agents, a smart card-
based use-control mechanism, cryptomodules that use a programmable logic implementation of the Data
Encryption Standard (DES), and hardware for switching ATM cells to appropriate cryptomodules.

This report describes in detail the issues in robustness-agile ATM encryption, and the design of a prototype
robustness-agile ATM encryption device. Section 2 motivates robustness-agile encryption technology by
describing how it can be used to provide security for ATM networks in a flexible manner. Section 3
describes in detail some of the issues associated with the implementation of robustness-agile encryptors,
including ATM QoS effects, the need for authentication and use-control, throughput, and synchronization.
A more detailed analysis of the ATM QoS effects is provided in Section 4, along with a relevant example.
The design and development of the prototype encryptor developed in this project is described in Section 5.
Finally, conclusions are presented in Section 6.

12/978

2. Motivation for Robustness-Agile ATM Encryption
As stated in [8], different applications often have different security requirements. These security
requirements may be dictated by the expected lifetime of the application data, the real-time nature of the
data (which may preclude slow cryptographic operations such as file encryption), and site security policy. In
order to apply the appropriate level of confidentiality protection to an application data stream, the
encryption service must be robustness agile.

The terms key-agile, algorithm-agile, and robustness-agile (defined in [8]), refer to the ability of an
encryption device to apply different encryption contexts (i.e., keys, algorithms, and algorithm/key lengths,
respectively) to each application data circuit. In the case of ATM, an application data circuit is identified by
the Virtual Path Identifier (VPI) and the Virtual Channel Identifier (VCI) for a given link. Therefore,
robustness agile encryption requires that the encryptor be capable of applying an algorithm and a key of
appropriate length to cells on a specified VPI and VCI.

With ATM, the Virtual Channel Connections (VCCs) which carry application data can originate from an
end system, or they can be aggregated at a private switch port which is either connected to another private
switch, or to a public carrier. By placing a robustness agile encryptor between the host and the first switch
(on the User to Network Interface, or UNI), or alternatively, embedding the encryptor within the host’s
Network Interface Card (NIC), VCCs can be encrypted directly at the source. This approach is
advantageous if one does not trust other users in the private network, or if one wishes to form Virtual
Private Networks (VPNs) of subsets of hosts which attach to a common physical network. These
alternatives, embedded NIC encryption and UNI encryption, are shown in Figure 1 as the “Embedded
RAE” and the “UNI RAE”, respectively.

Alternatively, the RAE may be placed at the Private Network to Network Interface (PNNI), and/or at the
Public UNI. By placing the RAE at the PNNI, the RAE provides encryption services for VCCs which
terminate at hosts on the plaintext side of the encryptor. This approach offers significant cost savings
because one encryptor is shared among many users. However, this approach is only useful if the common
ATM network and its users are trusted not to reveal the plaintext data. This is generally true if the network
and hosts are physically protected, and the users are screened and trained according to appropriate site
security policies. This concept of workgroup encryption can be taken further by placing the RAE at the
Public UNI, which affords encryption services for an entire site. Placement of the RAE at the PNNI and
Public UNI is also shown in the reference model in Figure 1.

12/97 9

Host Workstat ion

Pr ivate ATM Network

Customer Premises Swi tch

Publ ic ATM Network

Access/Cert i f icate Server

Embedded
R A E

UNI
R A E

PNNI
R A E

Publ ic UNI
R A E

Access/Cert i f icate Server

Figure 1: RAE Reference Model

By placing the encryptor at the only point of entry into the network (either the site network, or a private
subnetwork), the opportunity exists to control remote access into the protected network. In order to perform
this access control, one or more Access Control Servers and/or Certificate Servers are required. When
considering the role of these two servers, one must consider the authentication/authorization function. In
order to grant permissions to a requesting entity (such as a remote node which wishes to connect to a
protected host), the authorizing device must identify the requesting entity (authentication), and determine
that entity’s permissions according to an Access Control List (ACL). While a number of authentication
techniques exist (e.g., passwords, PINs, etc.), cryptographically strong authentication requires the
requesting user to participate in an authentication protocol, and requires the authorizing device to validate
the requestor’s identity using this protocol. The latter function requires that the authorizing device has
access to the requester’s public key.

The role of the Access/Certificate servers shown in Figure 1 is to provide the encryptor with the ACL and
the requester’s public key when the requester attempts to connect to a protected node. By providing this
information from a centralized location, management of ACL and public key information is simplified, as
multiple encryptors can simply query a “well known” server when they wish to perform authorization
functions. Although these servers provide encryptors with the ability to properly authorize access to remote
hosts, these servers can also be used to determine which internal users have access to which algorithms in
the encryptor. This additional function is described further in Section 3.

It should be noted that this two-step authorization process (authentication and ACL lookup) can be
condensed into a single step. New public key certificate formats (such as the Simple Public Key
Infrastructure, or SPKI [6]) include the access control credentials in the certificate. When such certificates
are examined by an authorizing device, it does not need to query an ACL to determine the entity’s access
privileges.

As stated earlier in this section, application traffic may have a variety of security protection requirements.
These requirements are dictated by the nature of the traffic, and by the security policy of the site or entity
which owns the data. In an open ATM network which allows hosts to establish VCCs to many other sites,

12/9710

the encryptor must be flexible in order to apply the appropriate protection to the application VCC, and to be
able to interoperate with the encryptor at the remote host. This scenario is shown in Figure 2.

Local Private ATM Network

Local Host #1

Local Host #3

Local Host #2

Local RAE

Public ATM Network

Remote RAE 1

Remote RAE 2

Remote Private ATM
Network #2

Remote RAE 3

Remote Private ATM
Network #1

Remote Host #1

Remote Host #3

Remote Host #2

Figure 2: Example Network using RAEs

Differences in security policy at the various sites may exist for a number of reasons. First, each site may
have their own algorithms which they prefer for technical reasons (such as the desire for low encryption
latency or increased perceived strength). Second, sites may prefer certain algorithms for financial reasons
(e.g., cost of royalties). Finally, sites may be constrained to only use certain algorithms due to political
reasons (e.g., export and/or import laws). At any rate, different sites may in general have different security
policies, which may lead to differences in algorithms, key lengths, or both. In order to establish ATM VCCs
to a variety of sites, the ability to support a variety of algorithms is required.

The ability to support a variety of algorithms may be provided in two ways, either by using a “crypto pool”
which contains a number of separate encryption devices, or by using a single robustness-agile encryptor.
However, the first approach is infeasible because it requires VCCs to be routed according to the required
security attributes for the VCC. This form of security policy-based routing does not yet exist in the ATM
standards. Furthermore, the first approach is more costly in terms of system management because each
device may have its own peculiarities, requiring additional training and staff in order to properly operate the
“crypto pool”. However, by using a single RAE, both of these problems are eliminated.

Nevertheless, when several encryption algorithms (each of which having different strengths and key
lengths) are provided in a single ATM encryptor, a number of implementation issues arise. These issues are
described in the following section.

12/97 11

3. Implementation Issues in Robustness-Agile Encryption
As described in [8], the implementation of key-agile, algorithm-agile and robustness-agile encryptors (of
which the RAE is the super-set) carries with it a number of issues. These issues occur because the RAE’s
functions, while similar in many respects to an ATM switch, are nevertheless rather unique to ATM
networking.

For reasons stated below, the key-agile ATM encryption process is considered to resemble the ATM
switching process. In particular, key-agile encryptors are similar to two-port ATM switches. For
comparison, ATM switches modify cell headers and switch cells based on the “switching context”
associated with each VPI/VCI. The initial association of switching information with a virtual circuit may be
a manual operation for Permanent Virtual Circuits (PVCs). The initial association might also occur
automatically at connection setup time for Switched Virtual Circuits (SVCs). Once this association is
established, for each incoming cell, the ATM switch performs an associative lookup of switching
information, based on the VPI/VCI found in each cell’s header. This switching information maps the
incoming VPI/VCI into the appropriate outgoing VPI/VCI. It also conditions the hardware to switch the
cell out the proper port.

Key-agile ATM encryptors resemble ATM switches in the sense that they modify cells based on the
“context” associated with each VPI/VCI. However, ATM encryptors modify the payloads of the cells,
rather than the headers. As with switches, the initial association of the cryptographic variables and state
with each virtual circuit may be a manual operation or be performed at SVC connection setup time (or later)
via the methods invoked for key management [11]. Once a cryptographic context is established for a virtual
circuit, for each incoming cell the encryptor performs an associative lookup of the cryptographic context
based on the VPI/VCI found in each cell’s header. The encryptor then uses that cryptographic context to
transform the incoming cell payload (plaintext or ciphertext) into the appropriate outgoing payload
(ciphertext or plaintext). Finally, the encryptor typically routes the cell out the opposite port of a two-port
device (although single-port, or so-called one-armed encryptors are not precluded). Hence key-agile ATM
encryptors resemble a two-port ATM-switch. Algorithm-agile and robustness-agile ATM encryptors also
resemble a two-port ATM-switch; however, they have an additional complication since their internal paths
and data structures may depend on the context information.

All three types of agile-encryption have some common issues. First, the number of potential contexts
(VPI/VCIs) and the amount of information per context may both be large. In general, there may be either
224 possible UNI VPI/VCI combinations or 228 possible NNI VPI/VCI combinations. Hence, implementing
the cryptographic-context lookup with “straight indexed” (flat) memory may be costly. Because the number
of simultaneously active contexts is likely to be small, an efficient key-agile encryptor could use an
associative memory lookup to determine the key and other cryptographic state information associated with
each cell stream. Clearly, encryption algorithms that must associate larger keys and greater state
information will be more cumbersome (expensive) to implement than algorithms that require a minimum of
key and state information. In either case, large content addressable memories (or the even larger sequential
memories required) with access times on the order of ATM cell header processing times are expensive
and/or unavailable. Hence, until large, inexpensive and fast content addressable memories do become
available, current designs compromise either the virtual circuit space over which circuits can be encrypted,
or the cell processing latency, or both.

Another common issue is synchronization. When an encryptor and decryptor pair have lost
synchronization, the decrypted data stream is scrambled, which leads to excessive data loss. While some
cryptographic algorithms or modes of operation are “self synchronizing”, others require both initial
synchronization and resynchronization after each cell loss. Since each virtual circuit has independent
synchronization, the synchronization state information adds to the amount of information that must be
associatively maintained for each encrypted virtual circuit.

12/9712

A third common issue is throughput. If the encryption or decryption process cannot keep up with the
maximum possible cell arrival rate, then the cell traffic throughput on that virtual circuit must be throttled in
some fashion to avoid cell loss. This can be done via Call Admission Control (CAC) at virtual circuit setup
time (for Constant, Variable, and Unspecified Bit Rate traffic) or by participation in the flow control after
virtual circuit setup (for Available Bit Rate traffic). In either case, the encryption/decryption devices must
participate in the establishment and/or control of the VC, making these devices no longer “transparent” to
the switching network.

Algorithm-agile and robustness-agile encryption adds additional complexity since the virtual circuits can
use different encryption algorithms, modes of operation, and (in the case of robustness-agile encryption)
key lengths. These choices add more data to be associatively maintained for each virtual circuit. In
addition, the various algorithms may require varying amounts of key material and state information, and
may also add additional hardware for optional processing of the cell payloads.

Algorithm-agile and robustness-agile encryptors can indirectly affect the ATM Quality-of-Service (QoS),
since different algorithms may have different delay, throughput, error magnification, and/or sensitivity to
synchronization upset. In that case, the ATM QoS negotiation which occurs at connection setup must
incorporate knowledge of the delays of the encryption methods contained in the encryptor. One interesting
effect is due to the different relative latencies of each algorithm. Algorithm-agile and robustness-agile
encryption preserves cell order within an individual virtual circuit and among virtual circuits that use the
same encryption algorithm. However, such encryption may cause re-ordering of cells that use different
encryption algorithms. This reordering may introduce additional Cell Transfer Delay (CTD) and/or Cell
Delay Variation (CDV) among cells of the same virtual circuit which use the same encryption algorithm.
Until the encryptors participate in the QoS negotiation, algorithm-agile encryptors may need to append
output buffering to low latency algorithms. This delay-equalization, with the higher latency algorithms,
trades lowered CDV for increased CTD. If algorithm-agile encryptors can participate in QoS negotiations,
then the set of available algorithms may be dynamically restricted to maintain a previously negotiated CDV
bound. This topic is addressed in more detail in Section 4 and in [10].

12/97 13

4. Analysis of QoS Effects of Robustness-Agile Encryption
An interesting issue is the effect of algorithm-agile and robustness-agile encryption on ATM QoS,
particularly on Cell Transfer Delay (CTD) and Cell Delay Variation (CDV). Algorithm-agile encryptors
come in two basic varieties – namely a single shared-processor or multiple parallel-processors. Performance
analysis for the single shared-processor case is a classic scheduling-problem. However, a single, shared-
processor architecture may not scale to Gigabit per second ATM link-rates because of the context-switching
overhead between different encryption algorithms. Hence, this project’s QoS study (documented in detail in
[10]) considered the multiple parallel-processor architecture shown in Figure 3. In this architecture, the cell
sorter forwards cells to the appropriate encryption/decryption pipeline. Each pipeline is then a key-agile
encryptor that implements one encryption/decryption algorithm. Finally, the output queue re-combines cells
after encryption/decryption.

Cell
Sorter

Input
Link

Output
Link

Output
Queue

Pipeline
M

Pipeline
1
��

��

��

��

Figure 3: Parallel Pipeline Architecture for an Algorithm-Agile Encryptor

Three important ATM Quality of Service (QoS) parameters are CTD, CDV and Cell Loss Ratio (CLR). As
defined in [2], CDV is the difference between the best-case and worst-case CTD, where the best-case is the
fixed network-delay and the worst-case is the CTD that is exceeded with a user-defined probability α.
“Excessive” CTD is undesirable for applications, such as voice, web-browsing and interactive game-
playing, that have response-time requirements. “Excessive” CDV is also undesirable because it complicates
timing recovery for Constant Bit-Rate (CBR) applications such as video, by requiring “smoothing” buffers
that contribute to excessive cell transfer delay. CDV can also cause buffer overflows, and hence cell-loss.
The ATM network and the ATM user negotiate mutually acceptable QoS values for a particular VC, during
call setup.

In both the single processor and multiprocessor cases, the encryptor is a single-input, single-output (SISO)
device that serves one input ATM-link and one output ATM-link. So, the encryptor can guarantee near-zero
cell loss. However, ATM QoS is still an issue with algorithm-agile (and robustness-agile) encryption
because each encryption algorithm, within an algorithm-agile encryptor, may have a different latency, or
per-cell encryption time. This differing latency may re-order cells, between ATM Virtual Circuits (VCs),
and hence cause CDV. Consistent with the ATM standards, algorithm-agile encryption does preserve cell-
order within an individual VC. Furthermore, algorithm-agile encryptors also maintain cell ordering within
all VCs that use the same encryption algorithm. However, such encryptors may re-order cells that use
different encryption algorithms. For example, let the cells from VCs 1 and 2 use encryption algorithms 1
and 2, respectively. Let algorithm 1 have a longer encryption time, per cell, than algorithm 2. Then, for
example, an input cell-sequence of 1,1,2,2,... might produce the output cell-sequence 2,2,1,1,... . This
introduces CDV into the output cell-stream. Both a single, shared-processor architecture and the multiple,
parallel-processor architecture can generate cell reordering, and hence CDV. The interaction between this
encryption-induced CDV and the ATM traffic-management policies (such as Usage Parameter Control
(UPC), or policing) negotiated for the affected VC can cause added cell-loss. Hence, an algorithm-agile
encryptor should participate in the QoS negotiations during ATM call-setup. That participation requires
models for the encryption-induced CDV.

12/9714

This project’s QoS study [10] derived the following results when the queueing discipline at the output
queue is First-In, First-Out (FIFO):

Assuming that all pipelines can process (i.e., encrypt or decrypt) cells at the offered rate, let Ti be the
cell processing time for encryption pipeline i, divided by the cell’s link transmission time (therefore, Ti

is measured in cells). Also, let T1 and Tm be the cell processing times for the longest and shortest
encryption pipelines, respectively. In that case, the CTD is bounded by the sum of the longest
pipeline’s execution time, the output queuing time and the output transmission time.

CTD <  T1 + 1 cells (1)

Furthermore, there is no CDV generation if:

| Ti - Tj | < 1, ∀ i ≠ j (2)

If Equation 2 holds, then the differential delay through the encryptor’s different pipelines does not
produce cell re-ordering. If Equation 2 does not hold, then cell re-ordering can occur. In that case:

CDV <  T Tm1 − cells (3)

In practice, an encryptor often has a bypass path, with Tm nearly equal to zero. So, a simpler CDV
bound omits Tm.

As an example, assume an algorithm-agile encryptor in which pipeline 1 implements the DES algorithm,
and pipeline 2 implements Sandia’s scalable ATM encryption algorithm [9]. Also assume that there is no
bypass path. Finally, assume that pipeline 1 contains 16 stages, with 64 bits per stage, and that the cell link
transmission time tc ≈ 2.8 µS/cell. (That transmission time corresponds to SONET OC-3.) In that case, the
cell storage in pipeline 1 is:

T1 =
()16 / 6

tc

tc = 2.667 cells

where the numerator denotes the pipeline delay (16 stages divided by 6 stages per (384-bit) cell, multiplied
by the time per cell), and the denominator denotes the normalization factor.

Similarly, assuming that Sandia’s scalable ATM encryption algorithm can encrypt a cell in 2.7 µS [9], then

T2 =
2.7 * 10

t

-6

c

= 0.964 cells

where the numerator again denotes the algorithm delay, and the denominator denotes the normalization
factor.

Since condition (2) is not met, the CTD and CDV bounds are as follows:

CTD < 4 cells = 11.2 µS

and

CDV < 1 cell = 2.8 µS

12/97 15

These CTD and CDV values are similar to those for a typical ATM switch. Therefore, as with ATM
switches, this algorithm-agile encryptor should participate in the QoS negotiations. Otherwise, these effects
could cause traffic contract violations, and hence cell loss.

In addition to the FIFO case, the project also studied equalizing the pipeline delays (e.g., through “build-
out”). As was expected, the CTD for that case was equal to the longest pipeline delay, while the CDV was
zero.

These two cases (FIFO queueing versus delay equalization) illustrate an interesting tradeoff. In the FIFO
case, the mean CTD is lower than that for the “build-out” case because some of the ATM cells traverse the
lower-delay paths. However, in the FIFO case, the CDV is greater than the “build-out” case due to these
differential delays through the various encryption pipelines. So, if the encryption pipeline delays (i.e.,
before “build-out”) are relatively similar, then one might use delay equalization so as to minimize CDV.
Alternatively, if the relative difference between the algorithm delays is great, then one might choose the
FIFO approach in order to minimize the mean CTD.

12/9716

5. Design and Development of a Prototype ATM Robustness
Agile Encryptor

5.1 Development RAE System Architecture
Early in this project, a “development RAE system architecture” was designed. This network architecture
was developed for two reasons: 1) to provide an environment for development of software and hardware
modules, and 2) to provide an environment to support functional and performance tests on the various
modules once they were completed. This development architecture is shown in the following figure:

Switch
Control

File Server

User 1 RAE 1 Switch RAE 2 User 2

1 2

3

Figure 4: Development RAE Architecture

In this architecture, the two robustness-agile encryptors are located at the UNI, and therefore encrypt ATM
cells for individual hosts rather than for groups of hosts. These encryptors are configured with two
algorithms – DES (with 56 bit effective key), and Sandia’s fast, scalable ATM encryption algorithm
developed under a previous project [9]. This configuration was selected because it paired a very popular,
but slow algorithm (DES) with an extremely fast algorithm to purposefully amplify the RAE’s effects on
QoS.

A VMEbus SPARC processor was selected to control the encryptor hardware, and to perform signaling-
based authentication, key exchange, and access control. Since the processor boards were configured as
diskless workstations, they were provided with Ethernet connections to allow them to mount a file server
which contains the development software. Although “production” RAE devices may not be designed this
way, this architecture was ideal for developing and testing new software modules.

The purpose of the switch is to simulate an ATM “cloud” between the two RAEs. Although the switch does
not implement a security agent, modifications to the signaling protocol software were performed in order to
support the transport of Security Services Information Elements during connection setup. Finally, the switch
was assigned a separate switch control processor which implements the IISP signaling protocol on all ports.

All devices, except for the switch, implement security agents in this system. These security agents
participate in the three security associations shown in Figure 5: one association between Host 1 and RAE 1,

12/97 17

another association between Host 2 and RAE 2, and a third association between RAE 1 and RAE 2. The
security associations between the users and their respective RAEs allows for mutual authentication to occur,
and hence, strong access control to the algorithms in the encryptor. The security association between the
two RAEs allows for mutual authentication, and the exchange of ATM cell encryption keys.

Host 1
R A E 2

ATM Swi tch

R A E 1
Host 2

UNI IISP IISP UNI

Mutual Authent icat ion Mutual Authent icat ion and Key Exchange Mutual Authent icat ion

SETUP (wi th SSIE 1)

SETUP (wi th SSIE 2)

SETUP (wi th SSIE 2)

SETUP (wi th SSIE 3)

CONNECT (w i th SSIE 4)

CONNECT (w i th SSIE 5)

CONNECT (w i th SSIE 5)

CONNECT (w i th SSIE 6)

Figure 5: Security Message Exchange

Although the ATM Forum’s Security Specification [1] describes a number of options for security message
exchange, the security exchange protocol selected for this implementation was the two-way, signaling-based
security message exchange. This protocol was selected because it could be developed separately from the
hardware, unlike the in-band protocol option, which required hardware to forward cells on the virtual circuit
to the security agent. In addition, because this protocol option is a two-way message protocol, it fit
gracefully into signaling’s setup/connect SVC establishment protocol.

5.2 RAE Prototype Architecture
The RAE system architecture is shown in Figure 6. The RAE has the following major components: the
shell, the cryptomodules, the control processor (which implements signaling, access control, and hardware
control), and the key management module.

12/9718

Workstation

A1

A2

An

Control Processor
(S igna l ing , Access Cont ro l , and Hardware
Contro l)

Shel l

Cryp to Modu les

Key Management Module
(Smart Card)

CloudSONET OC-3
SONET OC-3

Figure 6: RAE Prototype Architecture

The shell is the RAE logic which implements the algorithm-neutral functions. As cells enter the plaintext or
the ciphertext ports, the shell determines which algorithm shall process each cell, according to the contents
of the shell context memory which contain (VPI, VCI, algorithm) tuples for each active virtual circuit. Once
this determination is made, the shell routes the ATM cell and its cryptographic index to the appropriate
cryptomodule for encryption or decryption. Finally, as the cell leaves the cryptomodule, it is combined with
the output cell streams from the other cryptomodules, and is queued for transmission on the output SONET
link. Depending on the configuration of the RAE, the cell can either be queued for First Come First Served
(FCFS) queueing, or it can be buffered so that the delays across all algorithm pipelines are matched (i.e.,
build-out). The shell design and functions are described further in Section 5.2.1.1.

The algorithm and mode-specific processing functions (i.e., encryption and decryption) are performed in the
cryptomodule. When a cell arrives at the input of the cryptomodule, the cryptomodule retrieves the
encryption or decryption key from its context memory, using the cryptographic index provided by the shell.
Depending on the mode of operation that the cryptomodule implements, it may also need to look up
additional encryption context. For example, if the cryptomodule implements DES in Cipher Block Chaining
mode, then it will need to look up the previous ciphertext block in order to “chain” it into this block of
encryption. Once the key and context values are determined for this ATM cell, it is processed using the
designated algorithm and mode. When the encryption or decryption is completed, the cryptomodule stores
the current encryption/decryption context so that it will be available when the next cell arrives on the same
virtual circuit, and it sends the cell to the shell to be queued for transmission. The design of the
cryptomodule is described in Section 5.2.1.2.

In order to achieve key-length agility, our design supports the use of variable-width Linear Feedback Shift
Registers (LFSRs) as key generators. This approach allows for a fixed key-length algorithm such as Triple-
DES to be “dialed-down” to a desired level of robustness.

As stated earlier in this report, the RAE must control user access to a given encryption algorithm at a given
level of robustness (or strength). Furthermore, the RAE must support the negotiation of algorithms and
parameters with another RAE. These functions are performed by the signaling software, which runs on the
control processor. This software implements an ATM Forum “Security Agent” for node authentication, and
uses the ITU’s standard Q.2931 signaling protocol for security message transport. When a connection is
requested by an end system, the security agent performs the necessary authentication steps, consults an
access control table which maps user identities to cryptographic robustness levels, and determines whether
the connection is authorized. In addition, if the RAE interacts with another RAE, then the security agents

12/97 19

must exchange data encryption keys for the new connection. More details on the Q.2931 signaling software
and security agent can be found in Sections 5.2.2.1 and 5.2.2.2, respectively.

Once the secure connection negotiation is successful, the hardware control software on the control
processor configures the shell and crypto module hardware according to the security association. The
control processor selects the correct crypto module, loads keys, and enables the connection. In setting up
the connection, the control processor loads the cryptographic key into the crypto module and a key index
into the shell. Each RAE has one shell, which acts as a limited ATM switch. The shell switches connection
setup (ATM Control Plane) cells to the control processor, and switches cells on an established connection
(ATM User Plane) to the correct crypto module. The shell also performs OAM and specified VPI/VCI
diagnostic loop back. The control processor can configure the shell to discard cells on a specified VPI/VCI.
The control processor can also configure the shell to discard all cells on unknown VPI/VCI pairs. Each
RAE has one or more crypto modules, each of which is capable of at least one encryption/decryption
algorithm. In addition, the crypto modules are key agile. The shell switches a cell to the crypto module and
indexes the correct cryptographic key. Once switched to the crypto module, the cell is either encrypted or
decrypted, then delivered back to the shell and finally scheduled for transmission. More details on the
hardware control functions can be found in Section 5.2.2.3

The key management module allows for the secure storage of authentication keys and the exchange of data
encryption keys. In addition, the cryptographic algorithms which are used for these services are also
implemented in this module. In this implementation, a smart card and card reader are used to perform these
functions. The smart card-based implementation of the key management module is described further in
Section 5.2.2.4.

5.2.1 RAE Hardware

5.2.1.1 Shell
The RAE shell acts like a limited ATM switch. Figure 7 shows the allowed switching paths. Received cells
can be switched to the control processor, any crypto module, or the loop back path. Note that the shell does
not have a bypass path. If bypass is required, cells must be switched to a crypto module which implements
a bypass mode. The shell does not have the ability to pass plain text to the cipher text network without
going through a crypto module. Cells processed by the crypto modules are combined with loopback cells
and cells from the control processor. These cells are scheduled for transmission by a configurable cell
scheduler. The shell can be configured to discard cells with a specific VC or unknown VC. This allows
flexibility in security policies.

The shell can be logically divided into three main sections: control, transmit engine, and receive engine.
First, a brief description of the process that creates a secure connection is provided. Next, the details of the
three main shell sections is discussed. Finally, a description of the shell as a system of these three sections
is provided.

12/9720

Decryption
Module 1

Encryption
Module 2

Encryption
Module 1

Decryption
Module 2

UTOPIA PHY OC-3c Interface

UTOPIA PHY OC-3c Interface

To Control
Processor

To Control
Processor

From Control
Processor

From Control
Processor

Figure 7: RAE Switching Paths

5.2.1.1.1 Secure connection establishment
Once the connection establishment is complete and the security association is formed, the control processor
must configure the shell and crypto module to enable the connection. The control processor selects a crypto
module that supports the necessary algorithm. It creates an index and stores a cryptographic key in a
location on the crypto module pointed to by the index. Next, it creates an entry in the shell’s switching
table. The entry contains VPI/VCI information for the incoming cell along with a crypto module
designation to which the cell will be switched. The entry also contains the index that points to the key in the
crypto module. At this point, the secure connection is enabled. The shell uses the VPI/VCI of incoming
cells to determine if a secure connection exists. If the VPI/VCI of a received cell match an entry in the
switching table, the cell is switched to the crypto module specified in the table. The shell also sends the
index that points to the correct key. The crypto module receives the cell and uses the index to retrieve the
correct key. It then encrypts or decrypts the cell payload. Next, the processed cell is delivered back to the
shell. Finally, the shell schedules the cell for transmission and sends it when the channel capacity and that
VC’s priority allow. A secure connection is torn down by removing the entry in the shell’s switching table.

5.2.1.1.2 Control
The control processor communicates with the shell and crypto modules over a VMEbus. The shell and
crypto modules are slave devices. The shell uses a Cypress slave VME interface chip set (SVIC). At power
up, the SVIC is programmed using a serial PROM. The serial PROM data specifies A32/D32 and A32/D16
transfer modes. Interrupts are available but unused. The control processor uses the VMEbus to insert and
extract connection setup messages, configure the shell, and configure the crypto modules.

12/97 21

The shell has a 16 bit control register and a 16 bit status register. The control register responds to two
different addresses. Writing a ‘1’ to the first address will set the associated control bit. Writing a ‘0’ to the
second address will clear the associated control bit. Either address may be read without clearing any
control bits. The status register is read only It also responds to two different addresses. Reading address
one will not clear any status bits that are set. Address two is clear on read. Figure 8 shows the control
register definition. Figure 9 shows the status register definition. Note that bits which are not explicitly
defined are reserved.

0

1

2

3

4

5

6

7

b i t

E n a b l e P T R e c e i v e E n g i n e

E n a b l e P T T r a n s m i t E n g i n e

E n a b l e C T R e c e i v e E n g i n e

E n a b l e C T T r a n s m i t E n g i n e

R e s e t I g T 2 (R X P T / T X C T)

R e s e t I g T 1 (R X C T / T X P T)

D i s c a r d P T c e l l s o n u n k n o w n V C

D i s c a r d C T c e l l s o n u n k n o w n V C

f u n c t i o n

1

d e f a u l t

1

1

1

0

0

1

1

A l l c o n t r o l b i t s u s e p o s i t i v e l o g i c , 1 = t r u e

8 P T L o o p B a c k (a l l c e l l s) 0

9 C T l o o p b a c k (a l l c e l l s) 0

C o n t r o l R e g i s t e r D e f i n t i o n

1 0 M a s t e r R e s e t 0

Figure 8: Control Register Definition

S t a t u s R e g i s t e r D e f i n t i o n

0

1

2

3

4

5

6

7

b i t

C T C e l l A v a i l a b l e

R X P T F I F O o v e r r u n

R X C T F I F O o v e r r u n

i n d i c a t i o n

8

9

P T C e l l A v a i l a b l e

R X P T L O S

R X C T L O S

R X P T O O F

R X C T O O F

A l l S t a t u s b i t s u s e p o s i t i v e l o g i c , 1 = t r u e

Figure 9: Status Register Definition

12/9722

When a connection setup cell (VPI/VCI = 0/5) is received by the shell on either the plain text or cipher text
network, one of two status register bits is set by the shell, and the associated counter is also incremented.
The status register bit indicates that at least one connection setup cell is available. The counter indicates the
number of available connection setup cells. The control processor must poll the status register and extract
connection setup cells as they become available. The shell does not perform any ATM processing and
therefore does not delineate messages; this is the responsibility of the control processor.

By setting or clearing bits in the control register, the control processor can enable/disable the plain text and
cipher text transmit and receive engines. It can also define the security policy for cells on unknown virtual
circuits. A bit in the control register determines whether cells on an unknown virtual circuit are discarded
or switched to the default crypto module. The control register also has self clearing bits that perform a
master reset of the board or individually reset the UTOPIA (Universal Test and Operations Physical
Interface for ATM) interfaces. Lastly, the control register has two bits that control plain and cipher text
diagnostic loop back.

The status register contains SONET (Synchronous Optical NETwork) indications such as loss of signal.
The status register also has bits to indicate the availability of connection setup cells. If the cell available bit
is set, a clear-on-read counter indicates the number of available cells. The shell is designed to keep up with
a full SONET OC-3c data rate. If an error occurs and any cell is lost, an error indication bit in the status
register is set.

5.2.1.1.3 Cell Switching Table
The format of the switching table is shown in Figure 10. An inbound cell’s VPI/VCI is decoded into an
index into the switching table. The switching table contains a three bit field (board/algorithm) which
specifies the destination port for this cell. Bit 15 specifies whether the table entry is valid. If bit 15 is clear,
the control register bit “discard unknown VCs” determines whether this cell is passed to the default crypto
module or discarded. On reset of the RAE, the non-real-time controller will clear bit 15 in all switching
table entries. Setting bit 14 causes this cell to be discarded. All other bits are ignored if bit 14 is set.
Setting bit 13 causes this cell to be looped back. Bits 12:10 specify the intended output port (crypto
module). Bits 9:7 are reserved for future use. Bits 6:0 contain the index that point to the crypto module’s
key.

015 12 10 6

Flat Context Mem. IndexBoard/
Algorithm

1 = Loopback
1 = Discard

LB

1314

DISV

1 = Valid

bit

0 0 = Board 1
0 1 = Board 2

XX XX

Figure 10: Switching Table Entry

The current shell implementation does not fully decode the VPI/VCI. The least significant nine bits of VCI
and the least significant four bits of the VPI are combined to create a 13 bit index. Our initial requirement
was to provide a full VPI/VCI decode to create a non-aliasing index into the switching table. We identified
two alternatives to achieve this: use enough switching memory to fully cover the entire 24 bit space, and use
content addressable memory (CAM). As shown in Figure 10, each switching table entry requires two bytes

12/97 23

of data. To cover the entire 24 bit space, we would need 32 MB (24 bits = 16MB x 2B per entry) of
memory. Because of the high cost and low density of static random access memory (SRAM), board space
and cost considerations forced us to consider dynamic random access memory (DRAM). DRAM is roughly
a factor of ten times slower than SRAM and requires a refresh cycle which further slows access by limiting
availability. For these reasons, a DRAM switching table does not scale well. We also considered content
addressable memory (CAM). This type of memory can be SRAM-based. All 24 bits of a VPI/VCI would
be stored in an available CAM location whose address is Ai. The switching table entry (format shown in
Figure 5) would be stored in standard SRAM at location Ai. When a new cell arrives, its VPI/VCI would be
used to “address” the CAM. That is, the arrived VPI/VCI would be compared against all entries in the
CAM. If a match is found, the CAM will return Ai. Then Ai would be used to address the switching table
entry in standard SRAM. The CAM would be sized to support the maximum number of simultaneous
connections. This solution is scaleable and can be cost effective. We chose to implement a simple dual
port SRAM memory configuration due to time constraints. Note that the rest of the shell design does not
assume any specific memory format, therefore the shell’s switching memory can be upgraded with little
impact on the rest of the design.

5.2.1.1.4 Shell Memory Map
The non-real-time processor uses a VMEbus to communicate with the shell and crypto modules. Figure 11,
Figure 12, and Figure 13 specify the addressing of the shell. The most significant 12 bits of the address are
used to select the different boards. Different boards include the shell and crypto modules. The next four
bits are used to select the region on the board. Figure 12 shows the different regions for the Shell and crypto
modules (PLD-11). The least significant 16 bits are used for addressing within each region. Figure 13
shows the address space in each of the Shell board’s regions.

Board select - fully decoded

Region select - fully decoded

Space in selected region

A7 A0A2A3A4A5A6 A1A8A9A10A11A12A13A14A15A16A17A18A19A20A21A22A23A24A25A26A27A28A29A30A31

Figure 11: Shell Addressing

12/9724

Region Select
A16A17A18A19

Shell PLD-11
Region Select

A16A17A18A19

Status Register Status Register

Plain Text Context Memory Context Memory (responds to two addresses)

Context Memory (responds to two addresses)Cipher Text Context Memory

Plain Text IgT module

Cipher Text IgT module

IgT module (responds to two addresses) *

IgT module (responds to two addresses) *

Control Register Control Register

Plain Text cell insertion

Cipher Text cell insertion

Plain Text cell extraction

Cipher Text cell extraction

Cell insertion (responds to two addresses) *

Cell insertion (responds to two addresses)*

Cell extraction (responds to two addresses)*

Cell extraction (responds to two addresses)*

0 0 0 0

0 0 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

Number of PT cells for extraction Number of cells for extraction(two addresses)*1 0 1 0

Number of CT cells for extraction Number of cells for extraction(two addresses)*1 0 1 1

Figure 12: Region Definitions

Space in Region

Region

A7 A2A3A4A5A6 A1A8A9A10A11A12A13A14

Space Definition
Status Register

Plain Text Context

Cipher Text Context

Plain Text IgT module

Cipher Text IgT module

Control Register

Plain Text cell insertion **

Cipher Text cell insertion **

Plain Text cell extraction

Cipher Text cell extraction

A15 = 1 => no clear on read, A15 = 0 => clear on read; A14:A0

A15

A15 = 1 => set on write of 1, A15 = 0 => clear on write of 0; A14:A0

A13:A1 address 8k 16 bit context memory locations; A15, A14, A0

A13:A1 address 8k 16 bit context memory locations; A15, A14, A0

A4:A0 address the IgT resisters as defined in the included data

A0

A4:A0 address the IgT resisters as defined in the included data

A15:A0 = X

A15:A0 = X

A15:A0 = X

A15:A0 = X

Number PT cells for A6:A0 BCD cell count; A15:A7 = X (i.e., mask after

Number CT cells for extraction*** A6:A0 BCD cell count; A15:A7 = X (i.e., mask after

Figure 13: Space Definitions

5.2.1.1.5 Transmit Engine
The RAE has two transmit paths: plaintext transmit and ciphertext transmit. Each transmit path accepts
cells from three sources: cells processed by a crypto module, loop back cells, and cells injected by the non-

12/97 25

real-time-processor. The job of the transmit engine is to queue these cells and schedule them for
transmission.

The interface between the transmit engine and the crypto modules is 16 bits wide. This allows a slower
clock to be used on transfers between the shell and crypto modules. Cells are transferred from the crypto
module using the format defined in UTOPIA II [5]. The third 16 bit transfer contains user-defined data and
is discarded (see [5]). The transmit engine performs a width adaptation to convert the 16 bit UTOPIA II
format to an 8 bit UTOPIA I format. The resultant cell is queued in a FIFO dedicated to its source and
scheduled for transmission.

The transmit engine accept cells from each cell source and buffers them in individual first-in-first-out
(FIFO) memory. A flexible cell scheduler monitors each of the cell sources and determines when a cell is
available for transmission. If more than one cell is available for transmission, the scheduler decides which
cell should be transmitted next according to a programmable scheduling policy. A serial programmable
read only memory must be updated to support new scheduling policies. The existing policy gives priority to
cells received from the crypto modules and schedules those cells in the order received. Cells from the loop
back path are given second priority and cells from the non-real time processor are given third priority. The
scheduler assigns a designator to each of the cell sources. A cell is scheduled for transmission by storing
the designator in a scheduling FIFO memory. The transmit engine determines if the scheduling FIFO
contains a designator. If it does, the transmit engine reads the designator and determines which source is
represented. The transmit engine then transfers the designated cell into the UTOPIA interface where the
cell is framed and transmitted.

Bits 1 and 3 in the control register enable the plain text and cipher text transmit engines respectively. If
these bits are clear, (that is, ‘0’), cells from all sources are discarded.

5.2.1.1.6 Receive Engine
The shell has two receive paths: plaintext and ciphertext. Cells received from the UTOPIA interface can be
switched to one of three main paths: crypto module path, loop back path, and the non-real-time path. In
addition, these cells can be discarded. The receive engine switches cells by examining the VPI and VCI in
the cell header. Bits 0 and 2 in the control register enable the plaintext and ciphertext receive engines when
set. Both receive engines are enabled when the board is reset.

Cells from the UTOPIA interface are buffered long enough to extract the VPI and VCI from the header and
make a switching decision. The least significant four bits of the VPI are concatenated with the least
significant nine bits of the VCI to form an address into the switching table. Since the entire VPI/VCI space
is not decoded, aliasing is possible. That is, more than one VPI/VCI pair can generate the same address
into the switching table. Therefore, this design relies on sequential generation of VPI/VCI pairs by the
ATM switch. If more than one connection generates the same switching table address, cells from these
connections will be mixed together. Therefore, the control processor must ensure that when a new virtual
circuit is enabled, that the switching table address of that virtual circuit does not conflict with a previous
one.

Once the switching table address is formed, it is used to read the contents of the switching table. The
receive engine uses fields in the switching table to switch the cell. The first field is used to indicate the
validity of the entry. If the entry is invalid, the receive engine tests the state of a bit in the control register to
determine if the cell should be discarded or switched to the default crypto module or a bypass path. The
second field is used to instruct the receive engine to discard cells on this VPI/VCI. The third field contains
the port number to which the cell must be switched. The fourth field contains an index which will be passed
to the crypto module to address the correct cryptographic key.

If a cell is to be switched to a crypto module, the cell must be converted from UTOPIA I format to UTOPIA
II format. The receive engine performs this width and format conversion.

12/9726

5.2.1.1.7 Logic Development
The shell board’s logic was developed on an Altera workstation. The design is hierarchical with graphical
description files at the top levels and text description files at the lower levels. The design is divided into the
three major modules previously defined: VME control, transmit engine, and receive engine. Timing and
functional simulations on the design were performed to determine design correctness.

5.2.1.2 Cryptomodule
The cryptographic module is implemented on a Sandia-developed Flexible Programmable Logic Board
(PLD11). This circuit board was designed to be applied to the prototyping of several other high speed
communication functions as well as to the prototype cryptographic module in this research effort.

First, the PLD11 circuit board design will be described in general. The sections following will then
describe the logic compiled into the programmable logic devices to accomplish the cryptographic module
function.

5.2.1.2.1 PLD11
The PLD11 board provides a method of programming over a million logic gates to process a wide (over
384 bits) data path for high speed throughput. The programming can be accomplished in VHDL (Very
High Speed Integrated Circuit (VHSIC) Hardware Description Language) and compiled for downloading
into the board via a serial interface. The board is flexible in that it can be reprogrammed quickly and easily
to accomplish any given task.

 The PLD11 board is a 9U VME board that contains 11 Altera 10K100 Programmable Logic Devices
(PLDs) and associated support electronics. The board contains devices to connect the board to a standard
VME interface. It also contains clock distribution, Universal Asynchronous Receiver/Transmitter (UART)
and serial programmable support. The board was designed to provide a very wide interface (384 inputs,
and 384 outputs) for high throughput applications. The components on the board are capable of operation
as high as 100 MHz resulting in a throughput of 38.4 Gbps. The Altera 10K100 devices have
approximately 100,000 programmable gates. The entire board then acts as a single, large PLD having 768
I/O and 1.1 million programmable logic gates. In addition, the board is uniquely designed to accommodate
a patchwork of boards, each interconnected to provide expandability either in serial fashion for greater
number of gates, or in parallel for greater throughput. The middle three PLDs are suited for performing
additional logic or switching 96 bit wide data buses between alternate destinations.

The 14.44” X 15.75” PLD board contains 11 Altera 10K100 devices. The board also contains interface
circuitry to a VME bus, 50 MHz crystal oscillator, clock distribution, serial interface and 155 Mbps
UTOPIA I ATM interface. The board was autorouted using Veribest software. The digital lines on the
board are designed to be about 75 ohm, 5 mil traces. This impedance was chosen to reduce reflections
between PLDs.

A logical flow of the board is shown in Figure 14.

12/97 27

1111

1111

11

1 11

1 11

(503 pin)

MEMMEM

U1

(503 pin)

MEMMEM

U2

(503 pin)

MEMMEM

U3

(503 pin)

MEMMEM

U4

(503 pin)

MEMMEM

U5

(503 pin)

MEMMEM

U7

(503 pin)

MEMMEM

U6

10K100
(503 pin)

MEMMEM

U8

(503 pin)

MEMMEM

U9

(503 pin)

MEMMEM

U10

(503 pin)

MEMMEM

U11

J1J3

J2J4

J5

J6

J7

J8

J9

J10

J11

J12

J13

J14

J15J16

P3

P2

P1

MA

MB

MC

J1,K1,L1

A1,B1,C1

G1C9,
H1B9,
I1A9

D1L3,
E1K3,
F1J3

A3A10,
B3B10,
C3C10

G3F9,
H3E9,
I3D9

D3L5,
E3K5,
F3J5

A5D10,
B5E10,
C5F10

I5A11,
H5B11,
G5C11

D5L7,
E5K7,
F5J7

A7,B7,C7

G7F11,
H7E11,
I7D11

MA

D7,
E7,
F7

MB

MC MC

MB MB

MC

MC

J2,K2,L2

G2,H2,I2

D2L4,
E2K4,
F2J4

A4I9,B4H9,C4G9

G4J10,
H4K10,
I4L10

D4L6,
E4K6,
F4J6

G6G10,H6H10,I6I10

A6L11,
B6K11,
C6J11

A2L9,
B2K9,
C2J9

D6L8,
E6K8,
F6J8

A8I11,B8H11,C8G11

G8,H8,I8

D8,
E8,
F8

MA MA MA

D1L3,
E1K3,
F1J3

A3A10,
B3B10,
C3C10

D3L5,
E3K5,
F3J5

I5A11,
H5B11,
G5C11

A5D10,
B5E10,
C5F10

D5L7,
E5K7,
F5J7

A2L9,
B2K9,
C2J9

D2L4,
E2K4,
F2J4

A4I9,B4H9,C4G9

G4J10,
H4K10,
I4L10

D4L6,
E4K6,
F4J6

G6G10,
H6H10,
I6I10

A6L11,
B6K11,
C6J11

D6L8,
E6K8,
F6J8

A8I11,B8H11,C8G11

G1C9,
H1B9,
I1A9

G3F9,
H3E9,
I3D9

G7F11,
H7E11,
I7D11

10K100 10K100 10K100

10K100 10K100 10K100

10K100 10K100 10K100 10K100

Figure 14: PLD11 Logical Signal Flows

The layout of the board is shown in Figure 15.

12/9728

P
3

P
2

P
1

U39

U40

U42

J30

J20

J17

J62
J46

J26

J27

J24

J25

J23

J64

S1

S2

S3

CR1
CR2
CR3
CR4
CR5
CR6
CR7
CR8
CR9

CR10
CR11
CR12
CR13
CR14
CR15

J1J3J5J7J9J1
1

J1
3

J2J4J6J8J1
0

J1
2

J1
4

J1
5

J1
6

U9

U28U29
J55

J37

U10

U30U31
J56

J36

U11

U32U33
J57

J35

J44

J63

U1

U12U13J47

J45

U3

U16U17J49

J43

U5

U20U21J51

J41

U7

U24U25J53

J39

U35

J34

U34

U53 U52J61

U36

J29

J31

U45U46U47U48

U49U50U51

E1E2E3

E8

E7

E5

E6

E4

F1F2F3F4
U38

Y1

J60
U44

J59

J58

E9

E10

E11E13E15

E12E14E16

E17
E19

E21

E32

E18E20E22

E23

U2

U14U15J48
E24

J42
E25

U4

U18U19J50
E26

J40
E27

U6

U22U23J52
E28

J38
E29

U8

U26U27J54
E30

E31

Y2

U37

J28

J22

J21

J19

J18

J65

Figure 15: PLD11 Board Layout

The PLD11 board contains a clock distribution circuit that is capable of delivering the reference clock, in
phase to all Altera 10k100 devices on the board with very little clock skew. In addition, it has been
designed to allow for the adjusting of the skew as well as the phase and frequency of the clock. The clock
distribution is shown Figure 16.

12/97 29

U35

33 Ω

33 Ω
Clock 1 inputs

U34

Clock Reference
Input

50 Ω

50 Ω

U35

J26

J22

J27

J24

J25

J23

Y2
SG-8001JA

50 MHz

J28

Clock Oscillator
Output

1Q0

2Q0

4Q0

1Q1

REF

4Q0 CLK11

CLK91

4Q1 CLK51

CLK31

3Q0 CLK61

CLK101

3Q1 CLK21

CLK41

2Q0 CLK111

CLK81

1Q0 CLK71

2Q1FB

REF

11

10

15

14

20

24

1917

1

24

20

11

23

1

U35

33 Ω
Clock 2 inputs

50 Ω

U36

4Q0 CLK32

CLK12

4Q1 CLK102

CLK52

3Q0 CLK42

CLK62

3Q1 CLK92

CLK22

2Q0 CLK112

CLK82

1Q0 CLK72

2Q1FB

REF

11

10

15

14

20

24

1917

1

CLK2

CLK3

CLK4

CLK5

CLK6

CLK1

CLKA1

CLKA2

2Q1

FB

19

17

Figure 16: PLD11 Clock Distribution Network

Commercially available PLD devices do not have either the wide data path or the large number of
programmable gates needed for many aggressive applications. This board provides both. In addition, the
board has data paths which can be rerouted using the middle three PLD devices for even greater flexibility.
This rerouting can switch two 96 bit wide buses between alternate destinations. This function enables the
board to perform context switching for ATM applications. This board is capable of supporting 4
independent 96 bit data streams continuously through the board at the clock rate.

This board is an improvement over existing technology in that existing PLD devices do not have the large
number of I/O pins or the large gate count required to accomplish large tasks. The board’s architecture
allows for the use of multiple boards, in either a serial or parallel fashion, to increase the number of gates or
increase the throughput without limit to meet application requirements.

The board has applications to a number of projects within Sandia and numerous other outside applications.
For example, the board will be used as a testbed for several applications related to high speed modem
development for the Air Force Phillips Lab. These applications include the study of communications
protocols, digital demodulator architecture studies and the study of military applications of commercial low
earth orbit satellite systems. Within Sandia, this board is used by this project, and by the Scaleable ATM
Encryption (SAE) project to develop demonstration hardware. The board also can be used for development
of Public Key Cryptography, Bit Error Rate test equipment, image filtering acceleration, SAR Radar image
processing, and real time CMOS chip emulation.

12/9730

This technology development can be applied to a number of government and industry applications. It is a
low cost alternative to the development of specialized hardware for any application requiring both a large
number (approx. 1 million) of programmable gates and high speed operation (greater than 50 MHz).
Commercial applications might include CMOS chip emulation. Military applications include image
processing and radar image analysis. Also, the board can be used in commercial ATM encryption
equipment.

5.2.1.2.2 Cryptomodule Design Issues
Networks of massively parallel processors and visualization workstations will require ATM encryption,
SONET encryption, and “non-SONET” encryption in the range of 1 to 100 Gb/s.

SONET encryption will be required at OC-48c (2.5 Gb/s) and OC-192c (10 Gb/s) in order to protect against
traffic analysis in some systems. Even though ATM encryption does not by itself protect against traffic
analysis, an even greater need is anticipated for ATM encryption at OC-48c and OC-192c in order to reduce
the number and cost of encryption units required for protection of communications.

The scaling of variable bit rate ATM encryption appears to be harder than the scaling of SONET
encryption. The fastest encryptors built today operate in the range of 0.05 to 0.622 Gb/s. Current ATM
encryption prototypes and products implement ATM encryption at OC-12c (0.622 Gb/s) or lower rates.
There exists a need to continue active R&D to scale “raw encryption” speeds far past those required for
OC-12 in order to achieve the 1000x speedup required for the efficient remote utilization of MPP
computing resources..

This research project has focused on Algorithm & Robustness Agility, Modes of Operation, and
Synchronization with lesser emphasis on speed and implementation cost.

Some applications require not only agility of the algorithm (the nonlinear block cipher used), but also
agility of the “feedback mode of operation”. Several “feedback modes of operation” are depicted in Figure
17. The simplest mode is the Electronic Code Book (ECB) mode, but this mode allows repeating patterns
in the plaintext to be also discerned in the ciphertext, enabling some statistical cryptanalysis. The use of
other “feedback modes” have evolved to present certain cryptographic advantages. Figure 18 tabulates
some of the advantages and disadvantages of the more common modes of operation. Of special interest is
the “counter mode” since it can be scaled by parallel implementation to operate at very high data rates, and
yet can interoperate with less expensive lower speed encryptors or decryptors implemented with a lesser
scale factor . Counter mode involves a “cryptographic state” which prevents inference of patterns in the
plaintext from patterns in the ciphertext. This provides protection against “dictionary lookup” and
“playback attacks” which is not provided by ECB mode. One disadvantage of counter mode is that it is not
“self-synchronizing”. That is, a method of synchronizing the decryption process with the encryption
process must be designed into a counter mode cryptosystem. Even though Cipher Block Chaining (CBC)
mode cannot be scaled to high speeds and yet interoperate with dissimilarly scaled implementations, it has
an advantage for low cost implementation at low speeds because of its automatic self-synchronizing
property, while still protecting against “dictionary lookup” and “playback” attacks.

12/97 31

• Electronic CodeBook (ECB)

• Cipher Block Chaining (CBC)

• Cipher FeedBack (CFB)

• Output FeedBack (OFB)

• Counter Mode (Filter Generator)

• Plaintext Block Chaining

PT CT PT

PT

PT CT PT

PT CT PT++

++

PT CT+ +

PT CT PT++

PT CT+ +
PT

Figure 17: Summary of Feedback Modes of Operation

Mode Security Implementation Fault Tolerance Crypto Sync
ECB - plaintext

patterns
are not
concealed

+ no feedback
+ no IV storage
+ encryption and decryption
are parallelizable

+ cell loss has no additional
negative effects
- ciphertext error
magnification

+ self
synchronizing

CBC + plaintext
patterns
are
concealed

- feedback from encryption
output
- IV storage
- encryption is not
parallelizable
+ decryption is parallelizable

+ cell loss causes 1
additional block of
plaintext to be corrupted
- ciphertext error
magnification

+ self
synchronizing

CFB + plaintext
patterns
are
concealed

- feedback from encryption
output
- IV storage
- encryption is not
parallelizable
+ decryption is parallelizable

+ cell loss causes 1
additional block of
plaintext to be corrupted
- ciphertext error
magnification

+ self
synchronizing

OFB + plaintext
patterns
are
concealed

- feedback from encryption
output
- IV storage
- encryption and decryption
are not parallelizable

- cell loss causes loss of
crypto synchronization
+ no ciphertext error
magnification

- requires periodic
resynch

Counter +
plaintext
patterns
are

- feedback from
encryption input
- IV storage
+ encryption and

- cell loss causes loss of
crypto synchronization
+ no ciphertext error
magnification

- requires
periodic resynch

Figure 18: Characteristics of Common Modes of Operation

12/9732

After examining the properties of the many “feedback modes of operation” that can be used with any
nonlinear block encryption algorithm, this research suggests that a single mode of operation does not span
the entire “cost vs. performance” space. At least two modes of operation which protect against dictionary
lookup and playback will ultimately prevail. These are 1) the counter mode for its ability to scale and
interoperate, despite its synchronization requirement, and 2) CBC mode for its ability to be synchronized at
lower speeds at less cost, despite its inability to scale and interoperate. The “cost of synchronization” vs.
“scalability” of these two modes are contrasted in Figure 19.

Two Encryption Modes will prevail
(and one for authentication)

0.1

1

10

100

1000

$

Counter Mode

CBC Mode

PBC Mode
(Authentication)

Gb/s

Figure 19: "Cost of Synchronization" vs. "Scalability" for Counter Mode and CBC

An encrypted link is usually not as reliable as an unencrypted link because 1) it involves extra equipment in
the path 2) the equipment is mysterious and easy to blame, 3) crypto sync loss is hard to detect, and slow to
recover from, 4) Key Management is hard, slow & sometimes cryptos get mis-keyed, 5) Diagnostic tools
are limited, and 6) When Out of Sync or improperly keyed, encryptors spew garbled plaintext into end
equipment and/or application software, fouling their state machines and interrupting service. The use of a
proper synchronization strategy minimizes this unreliability.

5.2.1.2.3 Encryption Module Logic Design
The basic logic design of the cryptographic module is shown in Figure 20. The crypto module receives
plaintext cells in UTOPIA II (16 bit) format from the RAE shell, along with the appropriate index to the
cryptographic state table as determined by the shell’s pre-processing of the cell header. The encryption
module then converts incoming cells from the 16 bit-wide format to a 64 bit-wide format in order to reduce
the clock rate required for processing, and to be compatible with the block width of the nonlinear
cryptographic block cipher to be used. For this project, the 64 bit width also matches the block width of the
Data Encryption Standard (DES) algorithm used.

12/97 33

The Control Processor initializes the contents of the context memory to contain the appropriate
cryptographic key and initial state variables at the time the virtual circuit is set up.

The encryption module retrieves the cryptographic key and state variables associated with the virtual
circuit with which the incoming cell is associated. The cell, which is divided into 64 bit blocks, is then
encrypted by the encryption engine. Control signals coincident with the cell header information cause the
encryption engine to pass the header information unencrypted while encrypting the cell payload
information. The resulting cell with plaintext header and encrypted payload is converted from the 64 bit-
wide format back to the 16-bit wide UTOPIA II format. It is then output to the shell for recombination with
other cell streams from other adjacent encryption modules. In addition, the context memory is updated with
the appropriate new cryptographic state to be retrieved for processing of the next cell to arrive in this virtual
circuit cell stream.

(Shell Plaintext Receive Engine)

(Shell Ciphertext Transmit Engine)

16 Bit-wide
Data Blocks

Narrow-to-Wide
Block Width
Conversion

Control
Signals

Control
Signals

64 Bit-wide
Data Blocks

Context
Memory

Control
Signals

Index

Crypto
State

Control
Signals

Wide-to-Narrow
Block Width
Conversion

16 Bit-wide
Data Blocks

Control
Signals

Control
Signals

64 Bit-wide
Data Blocks

New
Crypto
State

Encryption Engine

Control
Processor

Figure 20: Encryption Module Logic Design

5.2.1.2.4 Decryption Module Logic Design

The decryption module logic design is symmetrical to the encryption module design, as shown in Figure 21.
The primary difference is that the decryption module accepts ciphertext cells from the RAE shell, along
with the index of the appropriate decryption state to be retrieved from the context memory. In addition, the
inverse of the nonlinear block cipher that was used to encrypt the cell is used for the decryption operation.

12/9734

(Shell Ciphertext Receive Engine)

(Shell Plaintext Transmit Engine)

16 Bit-wide
Data Blocks

Narrow-to-Wide
Block Width
Conversion

Control
Signals

Control
Signals

64 Bit-wide
Data Blocks

Context
Memory

Control
SignalsIndex

Crypto
State Control

Signals

Wide-to-Narrow
Block Width
Conversion

16 Bit-wide
Data Blocks

Control
Signals

Control
Signals

64 Bit-wide
Data Blocks

New
Crypto
State

Decryption Engine

Figure 21: Decryption Module Logic Design

5.2.1.2.5 Encryption/Decryption Engine Logic Design
Although a single Encryption/Decryption Engine could be designed to configure itself to perform multiple
algorithms and modes of operation, this research effort chose to implement a single algorithm and mode
combination per crypto module. The RAE shell delivers cells to be encrypted or decrypted by a specific
algorithm to the crypto module configured to perform that algorithm.

Therefore, Encryption/Decryption Engines are to be implemented with various different algorithms
(nonlinear block ciphers) and with different “feedback modes of operation”. This section will describe the
design of Encryption/Decryption Engines to implement counter mode and Cipher Block Chaining (CBC)
mode of the same nonlinear block cipher algorithm, DES.

Figure 22 shows the logic design for a DES CBC Encryption/Decryption Engine. Again, CBC mode
provides self-synchronization and also low implementation cost at low speeds. Since the computation of
each succeeding block of ciphertext depends on the previous ciphertext block, the DES pipeline must “run
dry” (can never be filled). This greatly increases the latency for each encrypted cell. This additional latency
(with respect to other algorithms/modes) will cause increased Cell Transit Delay (CTD) or Cell Delay
Variation (CDV), depending on the method used by the shell to combine the encrypted output cell streams
from the various encryption pipelines.

12/97 35

Control
Signals

64 Bit-wide
Data Blocks

Crypto
State
(from context
memory)

64 Bit-wide
Data Blocks

New
Crypto
State
(to context
memory)

Control
Signals

+

DES Pipeline

(nonlinear
block
cipher)

Previous Ciphertext

Crypto
Key
(from context
memory)

Figure 22: DES/CBC Encryption/Decryption Engine

Figure 23 shows the design of a DES Counter Mode Encryption Engine. This mode can be scaled
efficiently for high speed parallel operation, and can be pipelined effectively to reduce cell latency.
However, this mode requires some means of synchronizing the linear sequence generator at the decryptor
with the one at the encryptor. The cost of implementing this synchronization method at low speeds is higher
than for self-synchronizing modes such as CBC. Figure 19 showed this tradeoff in more detail.

12/9736

Control
Signals

64 Bit-wide
Data Blocks

Crypto
State
(from
context
memory)

Control
Signals

64 Bit-wide
Data Blocks

New
Crypto
State
(to
context
memory)

DES Pipeline

(nonlinear
block
cipher)

Delay Matching
(FIFO) Buffer

+

Linear
Sequence
Generator

Crypto
Key
(from
context
memory)

Figure 23: DES Counter Mode Encryption/Decryption Engine

Figure 24 shows a DES implementation which is pipelined for high speed operation and also augmented
with a “bypass” control bit (to pass the plaintext cell headers).

12/97 37

Key Input Plain Text Input Bypass Control Bit
(input)

� ��

Bypass
� ��

� ��

Generate Subkey DES Round 0�

��

Bypass
� ��

� ��

Generate Subkey DES Round 1�

��

Latch

Latch

Latch

Latch

Latch

Latch

� ��

Key Output Cipher Text Input Bypass Control Bit
(output)

� �� � ��

� ��

Bypass
� ��

� ��

Generate Subkey DES Round 14�

��

Bypass
� ��

� ��

Generate Subkey DES Round 15�

��

Latch

Latch

Latch

Latch

Latch

Latch

� ��

� �� � ��

Figure 24: Pipelined DES Encryption Algorithm Implementation

5.2.2 RAE Software
The RAE software consists of four major components: the signaling module, the security agent, the
hardware controller, and the smart card interfaces. The signaling module performs ATM connection setup
signaling according to the ITU’s Q.2931 standard [7]. The security agent performs the ATM security
protocols (e.g., authentication and key exchange) according to the draft ATM Forum Security Version 1.0
specification [1]. The purpose of the key management module is to provide secure storage of user and
device keys. It also implements cryptographic functions for key exchange and authentication at connection
setup. Finally, the hardware controller is responsible for configuring the encryption hardware according to
the outcome of the authentication and key exchange protocols, and for monitoring the status of the various
hardware components.

In order to implement the two-way security message exchange protocol described in Section 5.1,
modifications of the host and RAE signaling software were required. The following figure shows the
software architecture for the end user system:

12/9738

SBA-200 Driver

IP Stack

App.

Fore APIs

Security Agent

UNI 4.0 (user)

Q.SAAL

App
Data

0/5Config/
Status

SBA-200 Hardware

Q.Port
Fore Systems
UNIX
Develop

Key:

SigApp

Control PlaneUser Plane

Figure 25: Host ATM Security Software Architecture

In the end system, most of the required software is already provided by Q.port, the Fore Systems drivers
and APIs, and by the UNIX operating system itself. The only additional software required was the “security
agent”, which implemented the two-way message exchange protocol summarized earlier. In addition,
modifications to the UNI 4.0 (user-side) module were also required to pass the Security Services
Information Elements to the Security Agent.

The following figure shows the software architecture for the RAEs:

VME Driver

HW Ctl

Security Agent

UNI 4.0
(net)

Q.SAAL

0/5
to user

0/5
to net

Config/
Status

RAE Hardware

Q.SAAL

IISP

Q.Port
Themis
Develop

Key:

ATM I/O Library

Control Plane

Figure 26: RAE ATM Security Software Architecture

12/97 39

As seen here, most of the RAE software was developed under this project. The only modules which were
provided by other vendors were the Q.port software and the VME interface drivers. The software modules
developed under this project include the Security Agent, the hardware control functions, and the ATM I/O
functions. The RAE security agent is mostly identical to the host security agent, except for some minor
configuration changes for security agent addressing and options for the key exchange service. The purpose
of the hardware control module is to provide a mechanism which allows the security agent to configure the
hardware as the security message exchange protocol progresses. In addition, since the security message
exchange protocol is conducted through signaling, the ATM I/O library was developed to allow the
signaling software to access the RAE transmit/receive registers for signaling traffic on VPI=0, VCI=5.

These four components (signaling, security agent, smart card interfaces, and hardware control) are
implemented as two processes, as shown in the following figure:

Hardware Contro l

Q.port ATM Signal ing
Software

Secur i ty Agent and
Smart Card I /F

SA 0 SA 1 SA 2

Signal ing
Port #1

Signal ing
Port #2 Hardware

Contro l /Status

Figure 27: RAE Software Inter-Process Communication

Within the signaling process, messages are passed between the Q.port signaling software and the security
agent in the form of calls to the security agent methods. Likewise, messages between the security
associations (contained within the security agent object) and the card reader are passed in the form of
function calls. However, because the hardware controller is implemented as a separate UNIX process, an

12/9740

inter-process communication mechanism is required to exchange hardware configuration messages with the
security association objects.

The use of UNIX IPC mechanisms for communications between the “key management module” (in this
case, the smart card) and the encryption hardware raises a potential vulnerability. This vulnerability exists
because the traffic encryption keys are passed “in the clear” through an untrusted medium, i.e., the UNIX
operating system. This vulnerability can be resolved in two ways – either harden the UNIX operating
system so that this operation becomes “trusted”, or treat the operating system as an untrusted channel, and
encrypt communications between the (trusted) key management module and the (trusted) encryption
hardware. Hardening the operating system, while possible, is difficult due to its complexity. Furthermore, it
may not be possible to harden the operating system to the point where it can be trusted to carry very
sensitive keying material. Although the second approach requires custom hardware to encrypt messages
between the KMM and the cryptomodule, it is preferred for three reasons. First, these modules are already
presumed trusted. Second, this solution is simple to analyze. Finally, this solution does not require
modifications to the complex UNIX operating system.

5.2.2.1 Signaling Software
The signaling software for the RAE is largely based on the Q.port signaling package from Bellcore. This
package is an implementation of the ITU Standard Q.2931 [7] and the ATM Forum’s UNI 4.0 signaling
protocols. These protocols specify the signaling required on the user to network interface to establish on-
demand virtual circuits, or Switched Virtual Circuits (SVCs). In addition, this software also provides an
implementation of the ATM Forum’s Interim Interswitch Signaling Protocol (IISP), which performs switch-
to-switch signaling and call routing functions.

In order to transport security information within UNI 4.0/Q.2931 signaling, the Q.port software was
modified to support the new “Security Services Information Element (SSIE)”, and the procedures associated
with its use (see [1] and [3]). This information element contains the information fields required by the
security agent when it carries out the security message exchange protocol. These fields include timestamps,
digital signatures, and nonces required for authentication, encrypted keys for key exchange, and negotiation
parameters. The Q.port signaling software required modification so that the SSIE would either be forwarded
with the entire message to the security agent or, if there is no security agent, transported without
modification. The format of the SSIE and its associated signaling procedures are defined in [3].

With respect to ATM signaling, the RAE functions as an ATM switch. That is, it implements the “network-
side” ATM signaling on the ports which are connected to end systems, and it implements IISP on the ports
which are connected to other switches or encryptors. However, the ATM switching “fabric” in the RAE is
different from typical ATM switches in that it modifies cell payloads instead of cell headers. As a result,
unlike typical switches, the RAE performs no VPI/VCI translation. For this reason, a new Fabric Control
module for Q.port was developed which guaranteed that the same VPI/VCI values are used on the input and
output ports.

5.2.2.2 Security Agent
The security agent is the software module which implements the security message exchange protocol
specified in [1]. For each security association (i.e., each active or pending security service between this
RAE and some remote RAE), there exists a security association object which implements the security
message exchange protocol. In addition to implementing the protocol, these security agent objects also
contain the negotiated parameters for the association, and they are responsible for communicating security-
related configuration information to the hardware control module.

This module interacts with the Q.port signaling software via a set of “hooks” which were developed in
Q.port for processing the SSIE. When the security agent receives a “process SSIE” request, it must first
determine whether a security association (SA) already exists, using the “Security Agent Identifier” fields in

12/97 41

the SSIE. If the security association exists, then the SSIE is forwarded to the appropriate SA object.
Otherwise, a new SA object is created, and the SSIE is forwarded to that object. When the SA object
receives the SSIE, it processes it according to the current state of the security message exchange protocol. If
a processing error is encountered (e.g., authentication failure), the SA object returns an error code to the
security agent, which returns an error code to the Q.port software (which then denies the connection
request). Otherwise, at the conclusion of the security message exchange protocol, a success code is
propagated back to Q.port, which then accepts the call. Also upon success of the protocol, the SA object
instructs the hardware controller (via the IPC mechanism described earlier) to enable the hardware for the
new virtual circuit, and to load the ATM cell encryption keys.

5.2.2.3 Hardware Control
The hardware control module is responsible for processing configuration requests from the security agent,
and/or from an X Windows user interface. Functions performed by this module include enabling virtual
circuits, loading keys, initiation of resynchronization, and transmitting/receiving signaling messages.

The X Windows interface is implemented in the Tool Command Language, with the X Windows Toolkit
(TCL/Tk). The TCL script is responsible for managing lists of active virtual circuits, and for processing
inputs from the user interface and/or the security association objects. It is also responsible for periodically
polling the RAE hardware to check for changes in its status, and to check for incoming cells on the
signaling virtual circuit (VPI=0, VCI=5). In order to perform hardware-specific functions, a set of
“extended” TCL commands, written in C, provide access to the hardware registers over the VMEbus.

If signaling cells are encountered on either of the RAE’s two ATM interfaces, the hardware control code
reassembles them into an AAL5 Service Data Unit (SDU). Once the SDU is fully reassembled, it is
forwarded to the Q.port signaling software via the IPC mechanism described earlier. Conversely, if a
signaling message is received from the Q.port software, then the hardware controller segments it into ATM
cells, and transmits the cells out of the appropriate RAE ATM interface.

5.2.2.4 Smart Card Software
The smart card software developed for the RAE allows the security association objects to access the smart
card during security message exchange protocol processing (at connection setup). The smart card has two
functions in this prototype – secure key storage (for both user and device keys), and cryptographic
processing.

A Smart Card is not unlike the ubiquitous credit card. Its physical dimensions and properties are much the
same. But, in addition to containing data to be read by the reader to which it's introduced, the Smart Card
also contains an embedded microprocessor. This allows the smart card to carry out its basic principal
activity, specifically, the reception of a command from the terminal and the sending of an appropriate
response from the card.

Communication between terminal and the smart card is always initiated by the terminal, which also supplies
power to the card. Only one data line is available, and the communication transmission is therefore half-
duplex: i.e., only one device may transmit at a time. One protocol with which we're familiar, specifies that
the right to send always passes to the receiver of the last block.

The single chip microcomputer contained in the smart card is the Siemens SLE44C40, which has the
following features:

• 256 Byte RAM (Working Area)
• 8 kByte ROM (Operating System)
• 4 kByte EEPROM (Applications and Data)

12/9742

This configuration delivers 10 year data retention properties. It also allows a minimum of 100,000
write/erase cycles per EEPROM page with 1 page equal to 4 bytes. Data formats of 1, 4 and 8 bits are
supported.

Throughput is limited by a maximum clock frequency of 7.5 MHz.

Access to the smart card’s cryptographic functions occur through its StarCos operating system. This
operating system controls access to “files” (which may contain keys) via user-entered Personal
Identification Numbers (PINs). However, access to these files is restricted to “write only”. (Although some
files, specifically “purse files” have “execute” permissions, allowing such files to be securely incremented
and decremented.) Therefore, these files are used for key storage, and can be configured such that these
keys can only be accessed when a user successfully provides a PIN. This allows the user to be bound with
the card, thereby providing user-level access control to the RAE.

The cryptographic functions provided by the smart card include digital signatures and encryption. Digital
signatures, which are used for authentication, are performed using the Digital Encryption Standard Message
Authentication Code (DES-MAC). Encryption, which is used for exchanging ATM cell encryption keys, is
performed using DES in Cipher Block Chaining (CBC) mode. Although these algorithms are specified in
the ATM Forum’s security specification [1], they are not implemented precisely in the specified manner.
For example, the smart card implements a different method of padding. Therefore, this implementation is
not compliant with the ATM Forum’s specification. However, other smart cards which implement digital
signatures and encryption in a compliant fashion do exist, particularly those which implement “public key”
algorithms.

12/97 43

6. Conclusions
Robustness-agile ATM encryption allows users and organizations to invoke flexible security services upon
request. ATM users need that flexibility because they often have simultaneous virtual circuits to several
different users in several different organizations. Those different organizations may have different security
policies. Hence, ATM users may need to encrypt their connections with a variety of encryption algorithms
and key lengths. In that case, a single ATM encryptor, that implements multiple algorithms, has several
benefits. First, it reduces the management costs. Second, it eliminates the requirement for non-standard
security policy-based routing mechanisms.

This report described the design, development, and issues associated with Robustness Agile Encryptors
(RAEs). The RAE used software components to implement security services that were invoked at
connection setup (i.e., ATM signaling, security protocol processing, and hardware configuration). Its
hardware components then implemented security services during the duration of the data virtual circuit (i.e.,
cell routing and multiplexing functions, and cryptographic functions). Finally, other implementation issues
included context lookup, effects on ATM Quality of Service (QoS), and access control.

12/9744

7. References
[1] The ATM Forum Technical Committee, ATM Security Specification, Version 1.0, Straw Ballot,

STR-SECURITY-01.00, The ATM Forum, 2570 West El Camino Real, Suite 304, Mountain View,
CA, December, 1997.

[2] The ATM Forum Technical Committee, Traffic Management Specification, Version 4.0, af-tm-
0056.000, The ATM Forum, 2570 West El Camino Real, Suite 304, Mountain View, CA, April,
1996.

[3] The ATM Forum Technical Committee, UNI 4.0 Security Addendum, ATM Forum BTD-SIG-SEC-
01.00, The ATM Forum, 2570 West El Camino Real, Suite 304, Mountain View, CA, February,
1997.

[4] The ATM Forum Technical Committee, UTOPIA Specification, Level 1, Version 2.0, ATM Forum
af-phy-0017.000, The ATM Forum, 2570 West El Camino Real, Suite 304, Mountain View, CA,
March, 1994.

[5] The ATM Forum Technical Committee, UTOPIA Specification, Level 2, Version 1.0, ATM Forum
af-phy-0039.000, The ATM Forum, 2570 West El Camino Real, Suite 304, Mountain View, CA,
June, 1995.

[6] Ellison, Frantz, and Thomas, Simple Public Key Certificate, Internet Draft, Internet Engineering
Task Force, March, 1997.

[7] The International Telecommunications Union, B-ISDN DSS2 User-Network Interface Layer 3
Specification for Basic Call/Connection Control, Recommendation Q.2931, February, 1995.

[8] L. G. Pierson and E. L. Witzke, Multiply-Agile Encryption in High Speed Communication Networks,
SAND97-1069C, Sandia National Laboratories, Albuquerque, NM, April, 1997.

[9] L. G. Pierson, T. D. Tarman, and E. L. Witzke, Scalable End-to-End Encryption Technology for
Supra-Gigabit/second Networking, SAND94-1622, Sandia National Laboratories, Albuquerque,
NM, May, 1997.

[10] P. E. Sholander, et. al., The Effect of Algorithm-Agile Encryption on ATM Quality of Service, Sandia
National Laboratories Report SAND97-0489C, Proceedings IEEE Globecom ’97, pp. 470-474,
Phoenix, AZ, November, 1997.

[11] T. D. Tarman, et. al., Final Report for the Protocol Extensions for ATM Security Laboratory
Directed Research and Development Project, SAND96-0657, Sandia National Laboratories,
Albuquerque, NM, March, 1996.

12/97 45

DISTRIBUTION:

1 Jeff Ingle
National Security Agency
Attn: R222, R&E
9800 Savage Rd.
Ft. Meade, MD 20755-6000

1 MS 0188 C. E. Meyers, 4523
1 MS 0188 LDRD Office, 4523
1 MS 0431 S. G. Varnado, 6200
5 MS 0449 R. J. Granfield, 6236
5 MS 0449 R. L. Hutchinson, 6236
5 MS 0449 P. E. Sholander, 6236
1 MS 0449 R. S. Tamashiro, 6237
10 MS 0449 T. D. Tarman, 6236
1 MS 0622 J. F. Jones, 4600
5 MS 0806 L. G. Pierson, 4616
1 MS 0806 M. R. Sjulin
1 MS 0806 M. O. Vahle, 4616
5 MS 0806 E. L. Witzke
1 MS 0815 L. L. Fine, 5931
5 MS 0874 P. J. Robertson, 1342
1 MS 9003 D. L. Crawford, 8900
1 MS 9011 H. Y. Chen, 8910
1 MS 9011 P. W. Dean, 8910
1 MS 9018 Central Technical Files, 8940-2
5 MS 0899 Technical Library, 4916
1 MS 0161 Patent and Licensing Office, 11500
2 MS 0619 Review and Approval Desk, 12690

For DOE/OSTI

	Abstract
	Acknowledgments
	Contents
	Figures
	1. Introduction
	2. Motivation for Robustness-Agile ATM Encryption
	3. Implementation Issues in Robustness-Agile Encryption
	4. Analysis of QoS Effects of Robustness-Agile Encryption
	5. Design and Development of a Prototype ATM Robustness Agile Encryptor
	5.1 Development RAE System Architecture
	5.2 RAE Prototype Architecture

	6. Conclusions
	7. References
	Distribution

